Notes

PRADIMICIN Q, A NEW PRADIMICIN AGLYCONE, WITH α-GLUCOSIDASE INHIBITORY ACTIVITY

Yosuke Sawada, Takashi Tsuno, Tomokazu Ueki, Haruaki Yamamoto, Yasuo Fukagawa and Toshikazu Oki

Bristol-Myers Squibb Research Institute, 2-9-3 Shimo-meguro, Meguro-ku, Tokyo 153, Japan

(Received for publication September 29, 1992)

Several pradimicin-family antibiotics have recently been found to possess potent antifungal activity, while their aglycones are inactive against fungi. In the course of the production improvement study of pradimicin L (Fig. 1) by *Actinomadura verrucosospora* subsp. *neohibisca* R103-3¹), a strain numbered A10102 was found to produce a new pradimicin aglycone designated pradimicin Q which exhibited a potent α -glucosidase inhibitory activity in vitro. In this paper, we wish to describe the fermentation, isolation, physico-chemical properties and structure of pradimicin Q. Comparative α -glucosidase inhibitory activities of pradimicin Q and other pradimicin aglycones are also reported.

Strain A10102 was isolated from MNNG-treated *A. verrucosospora* subsp. *neohibisca* R103-3 spores according to a procedure as previously described²⁾ and was fermented at 28°C for 14 days on a rotary shaker operating at 200 rpm in a 500-ml Erlenmeyer flask containing 100 ml of production medium consisting of soluble starch (Nichiden Kagaku) 1%, glucose 1%, L-glutamic acid 0.1%, L-methionine 0.05%, L-arginine 0.05%, (NH₄)₂SO₄ 0.1%, MgSO₄·7H₂O 0.05%, NaCl 0.05%, CaCO₃ 0.3%, K₂HPO₄ 0.6% and salts solution 1% (v/v) (FeSO₄·H₂O 0.1 g, ZnSO₄·7H₂O 0.1 g and MnCl₂·4H₂O 0.1 g in 1 liter of water), pH 7.0 before autoclaving. The fermentation broth (4.8 liters) was

Fig. 1. Structures of pradimicins.

Correspondence should be addressed to JUN OKUMURA, Bristol-Myers Squibb Research Institute, 2-9-3 Shimomeguro, Meguro-ku, Tokyo 153, Japan centrifuged at 5,000 rpm for 10 minutes at room temperature. The supernatant (4.5 liters) was adjusted to pH 2.0 with $6 \times HCl$ and mixed with 2 liters of ethyl acetate. The ethyl acetate layer was separated, rinsed twice with water (200 ml each), and concentrated to give a crude solid (453 mg). The crude solid was then dissolved in CH₃CN-0.15% KH₂PO₄ (pH 3.5) (1:1), and applied onto a column of ODS-A60 (200 ml, YMC Co., Ltd.). Elution was carried out with the same solvent system. Each fraction was monitored by HPLC (Waters M600, column: Cosmosil C₁₈-AR, 4.6 × 150 mm; elution: CH₃CN-0.15% KH₂PO₄ (pH 3.5) (3:7); flow rate: 0.7 ml/minute; detection: at 254 nm), and pradimicin Q-containing fractions (Rt: 17.1 minutes for pradi-

Table 1. Physico-chemical properties of pradimicin Q.

Nature	Purple-red powder
MP (dec.)	>200°C
HRFAB-MS $(M+H)^+$,	Found 465.0811
m/z	(Calcd: 465.0800)
Molecular formula	$C_{24}H_{16}O_{10}$
UV λ_{max} nm (ε)	
in MeOH	229 (25,600), 288 (19,500),
	514 (13,200)
in 0.01 N HCl-MeOH	232 (25,800), 289 (20,600),
(1:1)	512 (14,000)
in 0.01 N NaOH - MeOH	242 (20,000), 305 (19,600),
(1:1)	549 (15,900)
IR (KBr) cm^{-1}	3197, 1712, 1600, 1488,
	1399, 1245, 1187
CD λ nm ($\Delta \epsilon$ /mol·cm)	212 (+11.4), 225 (-4.4),
in MeOH	259(-23.2), 286(+6.6)
1	

micin Q) were pooled and concentrated to give a purple-red solid (190 mg). The solid (50 mg) was dissolved in 2 ml of MeOH-H₂O (3:2) and subjected to Sephadex LH-20 column chromatography using the same solvent system. Fractions containing pradimicin Q were pooled and concentrated *in vacuo* to give needles in free form (35 mg). The purity of pradimicin Q was determined both by HPLC under the above-described conditions and by silica gel TLC (Kieselgel $60F_{254}$, Merck Co.) with MeOAc-*n*-PrOH-28% NH₄OH (45: 105:60, v/v) (Rf: 0.23).

Physico-chemical properties of pradimicin Q are summarized in Table 1. The UV and visible spectra of pradimicin Q closely resembled those of

Table 2. ¹H NMR data of pradimicins Q and P $(400 \text{ MHz}, \text{ in DMSO-} d_6)$.

Proton	Pradimicin Q	Pradimicin P
3-CH ₃	2.504 (s)	2.34 (s)
4-H	6.97 (s)	6.84 (s)
5-H	$4.55 (\mathrm{dd}, J = 4.3, 9.8)$	4.53 (d, $J=3.4$)
6-H _{ax}	2.66 (dd, J=9.8, 15.8)	
6-H _{eq}	3.10 (dd, J = 4.3, 15.8)	5.10 (d, $J = 3.4$)
10-H	6.63 (d, $J = 2.4$)	6.67 (d, $J = 2.4$)
12-H	7.24 (d, $J = 2.4$)	7.29 (d, $J = 2.4$)
16-NH		8.37 (d, $J = 7.0$)
17-H		4.46 (dq, J = 7.0, 7.3)
$17-CH_3$		1.36 (d, $J = 7.3$)

Chemical shifts are given relative to solvent as internal reference at 2.50 ppm. Multiplicity and coupling constants (Hz) are in parentheses.

Table 3. ¹³C NMR data of pradimicins Q and P.

Position	¹³ C shift		¹ H shift	Position	¹³ C shift		¹ H shift
	Pradimicin Pradimicin Q P		Pradimicin Q		Pradimicin Q	Pradimicin P	Pradimicin Q
C-1	156.0 s	152.0 s		C-9	165.5 s	165.4 s	
C-2	118.4 s	127.7 s		C-10	108.2 d	108.4 d	6.63 d $(J=2.4)$
C-3	140.2 s	137.5 s		C-11	164.5 s	164.4 s	· · · ·
3-CH ₃	21.6 q	18.6 q	2.504 s	C-12	108.5 d	108.6 d	7.24 d (J=2.4)
C-4	118.3 d	123.7 d	6.97 s	C-12a	134.9 s	134.7 s	· · · ·
C-4a	137.0 s	139.7 s		C-13	185.7 s	186.4 s	
C-5	66.2 d	71.0 d	4.55 dd (J = 4.3, 9.8)	C-13a	110.6 s	110.8 s	
C-6	30.7 t	62.8 d	2.66 dd $(J=9.8, 15.8),$	C-14	155.0 s	154.0 s	
			3.10 dd (J=4.3, 15.8)	C-14a	131.6 s	132.4 s	
C-6a	146.1 s	137.8 s		C-14b	115.3 s	115.2 s	
C-7	153.9 s	155.3 s		C-15	171.5 s	167.0 s	
C-7a	111.2 s	112.4 s		C-17		47.6 d	
C-8	187.5 s	187.6 s		17-CH ₃		16.8 q	
C-8a	109.1 s	109.2 s		C-18		173.7 s	

Chemical shifts are given relative to DMSO- d_6 as internal reference for both ¹³C (39.5 ppm) and ¹H (2.50 ppm). Coupling constants (Hz) are given in parentheses.

Fig. 2. Long range ¹³C-¹H correlations of pradimicin Q.

pradimicin aglycones such as pradimicin $P^{3)}$. The FAB-MS spectrum of pradimicin Q revealed a $(M+1)^+$ ion at m/z 465 and a $(M)^-$ ion at m/z 464. The molecular formula of pradimicin Q was determined to be $C_{24}H_{16}O_{10}$ by HRFAB-MS, which is the same as that of pradimicin $M^{3)}$.

As shown in Table 2, the ¹H NMR spectrum of pradimicin Q is similar to that of pradimicin P except for the two upfield protons at C-6 and the lack of protons of the alanine moiety. The methine signals at $\delta 4.55$ and the methylene signals at $\delta 2.66$ and δ 3.10 that are assignable to C-5 ($\delta_{\rm C}$ 66.2) and C-6 (δ 30.7), respectively, from ¹³C-¹H COSY spectral data are all split into a doublet of doublets each, that is the AMX spin system. In the NOESY spectra, NOE's of the methine proton (δ 4.55) to 4-H (δ 6.97) and of 4-H to 3-CH₃ protons were observed. The ¹³C NMR spectrum of pradimicin Q is similar to that of pradimicin P except for the A ring carbon signals and the upfield shifts (δ 30.7) at C-6 (Table 3). These assignments were confirmed by the correlation spectroscopy via long range coupling (COLOC) experiments (Fig. 2). From these spectral data, the structure of pradimicin Q was deduced to be dealanyl 6-dehydroxypradimicin P.

The coupling constant values, 9.8 and 4.3 Hz at C-5 (Table 2), however, indicate vicinal couplings of $5-H_{ax}-6-H_{ax}$ and $5-H_{ax}-6-H_{eq}$, respectively, compared with $5-H_{eq}-6-H_{eq}$ in pradimicin P. Therefore, the hydroxy group at C-5 of pradimicin Q has the equatorial orientation. The CD data of pradimicin Q (Table 1) shows the same signs as those of pradimicins A and O, suggesting that pradimicin Q has the 5S configuration. Thus, the structure of pradimicin Q is deduced to be dealanyl-7,11-didemethyl-(5S)-pradimicin O (Fig. 1).

As 5,6-dihydrobenzo[a]naphthacenequinone compounds have a common and intense UV absorption maximum around 500 nm (Table 1) which overlaps with that of *p*-nitrophenol released from substrate *p*-nitrophenyl α -D-glucopyranoside, the amount of *p*-nitrophenol was measured after extraction with BuOH at the alkaline pH. Assay conditions are briefly described as follows: 40 μ l of

lable 4.	Compa	trative	e α-gluce	osidase	inhibitory	activities
of prac	limicin Q) and	related	compo	unds.	

Compound	IC ₅₀ (µg/ml)		
Pradimicin A	>100		
L	>100		
Μ	69		
Nª	62		
0	17		
Р	>100		
Q	3		
Pradimicinone I (AG-2) ⁴⁾	>100		
Pradinone I (Dealanyl pradimicinone I) ⁴⁾	96		

Data are shown in the mean of duplicate determinations.

^a Pradimicin N is identical with benanomicin C based on its physico-chemical and spectral data. IC_{50} of benanomicin C was reported to be 60 μ g/ml⁵⁾.

 α -glucosidase (Sigma G-5003, Type I BAKERS's yeast) (0.1 mg/ml in 100 mм phosphate buffer, pH 6.8 = 0.44 u/assay for tests or the buffer for the control, 950 μ l of 0.7 mm *p*-nitrophenyl α -Dglucopyranoside (Sigma N1377), and $10 \mu l$ of a varied concentration of an assay compound in DMSO were mixed and incubated at 37°C for 15 minutes. To the reaction mixture, 1.0 ml of 0.2 N NaOH and 1.0 ml of BuOH were added and mixed vigorously. Absorbance of the BuOH layer at 405 nm was measured spectrophotometrically. α-Glucosidase inhibitory activity was expressed in IC_{50} (µg/ml) at which the test compound inhibited 50% of the enzyme activity. IC_{50} was determined from a standard curve of p-nitrophenol which was prepared from the assay without test compound (0% inhibition) and the assay without enzyme (100% inhibition). Pradimicin Q shows the most potent α-glucosidase inhibitory activity among the tested analogs, with IC_{50} of $3 \mu g/ml$ (pradimicin N $62 \,\mu g/ml$), while pradimicins A, L and P are inactive at 100 µg/ml (Table 4). Pradimicins M, N, O, P and Q were also subjected to inhibitory activity assays using β -glucosidase (Sigma G4511), α - and β mannosidases (Seikagaku Kogyo 100962 and 100963, respectively) and α -(Seikagaku Kogyo 100560) and β -galactosidases (Sigma G1875). None of the compounds show any inhibitory activity on any enzyme at 100 μ g/ml except for β -galactosidase. The β -galactosidase activity was inhibited by pradimicin M (39.9%), N (32.4%), O (55.4%), P (36.0%) and Q (44.8%), each at $100 \,\mu\text{g/ml}$.

Pradimicin Q exhibited neither *in vitro* antifungal nor antibacterial activities at $100 \,\mu\text{g/ml}$. The cytotoxicities (IC₅₀) against human colon HCT-116 cells and mouse melanoma B16-F10 cells were determined to be 75 and $100 \,\mu\text{g/ml}$, respectively.

Acknowledgment

The authors wish to thank Dr. T. TAKAKUWA, JASCO, for CD measurement.

References

- SAITOH, K.; Y. SAWADA, K. TOMITA, T. TSUNO, M. HATORI & T. OKI: Pradimicins L and FL: New pradimicin congeners from *Actinomadura verruco*sospora subsp. neohibisca. J. Antibiotics 46: 387~ 397, 1993
- SAWADA, Y.; M. NISHIO, H. YAMAMOTO, M. HATORI, T. MIYAKI, M. KONISHI & T. OKI: New antifungal antibiotics, pradimicins D and E. Glycine analogs of

pradimicins A and C. J. Antibiotics 43: $771 \sim 777, 1990$

- 3) SAWADA, Y.; T. TSUNO, H. YAMAMOTO, M. NISHIO, M. KONISHI & T. OKI: Pradimicins M, N, O and P, new dihydrobenzo[a]naphthacenequinones produced by blocked mutants of *Actinomadura hibisca* P157-2. J. Antibiotics 43: 1367~1374, 1990
- 4) TSUNAKAWA, M.; M. NISHIO, H. OHKUMA, T. TSUNO, M. KONISHI, T. NAITO, T. OKI & H. KAWAGUCHI: The structures of pradimicins A, B and C: A novel family of antifungal antibiotics: J. Org. Chem. 54: 2532~2536, 1989
- TAKEUCHI, T.; T. HARA, M. HAMADA, S. KONDO, M. SEZAKI, H. YAMAMOTO & S. GOMI: A new α-glucosidase inhibitor benanomicin C and its production. Jpn. Kokai 83351 ('90), Mar. 23, 1990